Unfavourable factors in older women with clinically favourable breast cancer
A clinical prediction model for recurrence

Mandy Kiderlen, M.D.
PhD student
Leiden University Medical Center, The Netherlands

Lisbon, October 24th
SIOG
Breast cancer in the elderly

- Treatment recommendations are largely based on trials performed in younger patients
 - Selective inclusion
 - Limited generalizability

- Observational studies

Biganzoli et al. Lancet Oncology 2012; van de Water et al. JNCI 2014
Overtreatment vs. Under-treatment

Treatment efficacy

Treatment tolerability
- Treatment toxicity
- General life expectancy
- Quality of Life
- Patient preferences
• However: Adjuvant! Online does not adequately predict overall survival and recurrence in older breast cancer patients

De Glas et al., Lancet Oncology 2014
Probability of cancer specific death: Competing risks

- Older early breast cancer patients are at higher risk of non-cancer mortality than breast cancer mortality
 → risk on non-cancer mortality increases with age

Objective

- To identify predictive factors for recurrence in older women with clinically favourable breast cancer

→ To create a tool to help select patients with a relatively good and worse prognosis, to base individual treatment recommendations on
Methods

• Netherlands Cancer Registry:
 • All consecutive breast cancer patients diagnosed between 2003-2006
 • Age 65 years and older
 • Clinically negative axillary lymph nodes
 • Clinical examination and/or ultrasound
 • Max. tumour size 5 cm
 • Breast surgery
Primary endpoint

• Recurrence
 • Local recurrence (in-breast)
 • Regional recurrence (axillary or supraclavicular lymph nodes)
 • Distant metastases
Statistics

- Fine and Gray regression analysis
 - Takes into account competing risk of mortality
 - Deceased patients are not at risk for recurrence any more
 - To prevent overestimation of the effect in prediction
Model building

- Candidate predictors:
 - pT
 - Grade
 - Morphology (ductal/lobular/mixed/other)
 - Multifocality
 - Estrogen Receptor (ER)
 - Progesterone Receptor (PR)
 - Human Epidermal growth factor-2 (HER2)

- Backward elimination at p-level <0.05
Validation

- Discrimination: ROC curve
 - Area Under the Curve (AUC)

- Internal validation
 - Bootstrapping (1000x)

- External validation
 - FOCUS cohort:
 - All consecutive older breast cancer patients in the Leiden region, diagnosed between 1997-2002
 - Same inclusion criteria
Results

• Development cohort: 9,183 patients

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>5,655</td>
<td>61.6%</td>
</tr>
<tr>
<td>75 or older</td>
<td>3,528</td>
<td>38.4%</td>
</tr>
<tr>
<td>pT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>5,816</td>
<td>63.3%</td>
</tr>
<tr>
<td>T2</td>
<td>3,367</td>
<td>36.7%</td>
</tr>
<tr>
<td>pN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>6,646</td>
<td>72.4%</td>
</tr>
<tr>
<td>N1</td>
<td>1,819</td>
<td>19.8%</td>
</tr>
<tr>
<td>N2</td>
<td>294</td>
<td>3.2%</td>
</tr>
<tr>
<td>N3</td>
<td>127</td>
<td>1.4%</td>
</tr>
<tr>
<td>Missing</td>
<td>297</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
Treatment

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCS</td>
<td>4,564</td>
<td>49.7%</td>
</tr>
<tr>
<td>Mastectomy</td>
<td>4,619</td>
<td>50.3%</td>
</tr>
<tr>
<td>None</td>
<td>274</td>
<td>3.0%</td>
</tr>
<tr>
<td>Axillary surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel node</td>
<td>4,704</td>
<td>51.2%</td>
</tr>
<tr>
<td>ALND</td>
<td>4,136</td>
<td>45.0%</td>
</tr>
<tr>
<td>unknown</td>
<td>69</td>
<td>0.8%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>327</td>
<td>3.6%</td>
</tr>
<tr>
<td>Endocrine therapy for ER+</td>
<td>2700</td>
<td>43.6%</td>
</tr>
</tbody>
</table>

BCS: breast conserving surgery
ALND: axillary lymph node dissection
Final model

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/10</td>
<td>1.12 (1.01-1.24)</td>
</tr>
<tr>
<td>T1</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>T2</td>
<td>1.90 (1.64-2.20)</td>
</tr>
<tr>
<td>Grade 1</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1.83 (1.46-2.30)</td>
</tr>
<tr>
<td>Grade 3</td>
<td>2.52 (1.97-3.24)</td>
</tr>
<tr>
<td>Multifocality</td>
<td>1.24 (1.01-1.54)</td>
</tr>
<tr>
<td>ER negative</td>
<td>1.39 (1.11-1.72)</td>
</tr>
<tr>
<td>PR negative</td>
<td>1.56 (1.27-1.92)</td>
</tr>
</tbody>
</table>

Hazard Ratio
Internal validation

Discrimination

AUC: 0.691

AUC: 0.691 (95% CI 0.686-0.696)
External validation
Discrimination

AUC: 0.680
Internal validation

Calibration

Observed cumulative incidence at 5 years

Predicted cumulative incidence at 5 years
Internal validation
Calibration

Observed cumulative incidence at 5 years vs. Predicted cumulative incidence at 5 years.
External validation

Calibration

Observed cumulative incidence at 5 years vs. Predicted cumulative incidence at 5 years.
Conclusion

• With this model including
 • Age
 • Tumour size (T stage)
 • Histological grade
 • Multifocality
 • ER
 • PR

... we can adequately predict breast cancer recurrence in older, clinically node negative, breast cancer patients, *without* information from axillary surgery
Discussion

Interpretation

• First step in prediction of recurrence in older breast cancer patients

• In this model, no additive predictive value of HER2 or morphology
 • Further research
Discussion

Limitations

• Most patients did receive axillary surgery (51% SNLB, 45% ALND)

• \(pT \) in model
 • all patients had breast surgery
 → future: incorporate clinical stage (risk prediction prior to breast surgery)

• No clinical geriatric parameters in model
 • Impact on competing risk of mortality

• Discrimination vs. Calibration
 • Underestimation of the absolute risk in external validation set
Discussion

Future

• Development of model including patient characteristics and molecular tumour characteristics

• To predict who will die from the tumour and who will die with the tumour
Acknowledgements

LUMC Geriatric Oncology research group
Depts. of Surgical Oncology and Geriatrics and Gerontology

Prof. Cornelis J.H. van de Velde
Gerrit-Jan Liefers
Esther Bastiaannet
Ton de Craen
Willemien van de Water
Nienke de Glas
Charla Engels
Leonie de Gruiter

Comprehensive Cancer Center The Netherlands

Sabine Siesling
Annemieke Witteveen