Predictive tools

- 2002-2005
- Prospective cohort multicentre study
- Cancer patients 70+
 - Including NHL, excluding breast cancer
 - aCGA
 - MMSE, get up and go (GUG), ADL, IADL, MNA, GDS15, CIRS-G
 - By geriatrician and trained nurse
- Scheduled for 1st line chemotherapy
 - Chosen by clinician (blinded to aCGA results)
- 6-month death

6-month death risk with chemotherapy

- 348 patients
 - Median age 77.45 (70-99.4)
 - M/F: 1.47
 - 37% CRC and gastric cancer, 36% NHL
 - 65% advanced stage
- 12 centres SW France
 - 2 cancer centres, 10 community hospitals
- Chemotherapy
 - Standard regimen and doses: only 45%!
- 6-month death: 56 patients (16.1%)
 - 73% cancer
 - 14% treatment complications
 - 13% intercurrent conditions

Soubeyran, J Clin Oncol 2012

MV analysis

<table>
<thead>
<tr>
<th>MV analysis</th>
<th>OR</th>
<th>95%CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>2.4</td>
<td>[1.2-4.82]</td>
<td>.013</td>
</tr>
<tr>
<td>Advanced</td>
<td>3.9</td>
<td>[1.58-9.73]</td>
<td>.003</td>
</tr>
<tr>
<td>Poor MNA (≤23.5)</td>
<td>2.77</td>
<td>[1.24-6.18]</td>
<td>.013</td>
</tr>
<tr>
<td>Long GUG (≥20 sec)</td>
<td>2.55</td>
<td>[1.32-4.94]</td>
<td>.006</td>
</tr>
</tbody>
</table>

Mv→ no role for
- Age strata, PS, WBC and platelets, LVEF
- Tumour site, treatment schedule, treatment site

Conclusions

- Limitations
 - Main causes of death are cancer (73%) and toxicity (14%)
 - MNA and GUG impairments overlap
 - Increase with advanced stage
 - Increase risk toxicity
- MNA and GUG
 - Other tools? (CRASH, CARG)
 - Routine pretreatment workup?
 - MNA 10’ full version or 3’ stand-alone short version
- Research
 - Rationale for RCT INOGAD: chemo + nutritional support vs chemo + standard support
Screening for disabilities

- Prospective cohort multicentre study
- Cancer patients 70+
- 2 independent physicians
 - C G A
 - MMSE, ADL, IADL, MNA, CIRS-G
 - SOF (Study of Osteoporotic Fractures) index
- Weight loss ≥ 5%, rise from a chair x 5, “do you feel full of energy”
- SOF index vs CGA (reference) in predicting the disability
 - SOF diagnostic accuracy < 80% not acceptable

Luciani, Annals Oncol 2012

SOF vs CGA

- 400 patients
 - Median age 77.2 (range 70–97)
 - 35.2% lung, 19.2% colon, 7% gastric
 - 94.5% ≥ 1 comorbidity (CV 61%, GU and respiratory 23%)
 - CGA classification: 31.8% unfit and 68.2% fit

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRS-G (> 3)</td>
<td>71.4 (66.7-76.7)</td>
<td>43.3 (24.5-52.4)</td>
<td>62.5 (57.6-67.3)</td>
</tr>
<tr>
<td>ADL (≤ 5)</td>
<td>28.2 (22.9-33.9)</td>
<td>100.0 (97.1-100)</td>
<td>51.0 (46.0-56.0)</td>
</tr>
<tr>
<td>MNA</td>
<td>56.0 (49.9-62.0)</td>
<td>81.1 (73.2-87.5)</td>
<td>64.0 (59.1-68.7)</td>
</tr>
<tr>
<td>MMSE (≤ 28)</td>
<td>65.9 (60.7-71.5)</td>
<td>87.7 (83.8-75.7)</td>
<td>66.5 (61.6-71.1)</td>
</tr>
<tr>
<td>SOF (> 2)</td>
<td>89.0 (84.7-92.5)</td>
<td>81.1 (73.2-87.5)</td>
<td>86.5 (82.8-89.7)</td>
</tr>
<tr>
<td>IADL (≤ 6)</td>
<td>59.3 (53.3-65.2)</td>
<td>97.6 (93.3-99.5)</td>
<td>71.5 (66.8-75.9)</td>
</tr>
</tbody>
</table>

*NPV 77.4% (69.4-84.2), no difference of sensitivity and NPV according to disease stage

Luciani, Annals Oncol 2012

Geriatric assessment in oncology

- Large review of all GA instruments used in the oncology setting (Medline, Embase, Psychinfo, Cinahl, Cochrane Library Jan 1996-Nov 2010)
 - Feasibility and psychometric properties of instruments
 - Effectiveness in predicting/modifying outcomes (treatment decision making, toxicity, mortality)
 - Cross-sectional, longitudinal, interventional, or observational studies

Geriatric assessment in oncology

- 83 articles reporting on 73 studies
 - Quality of most studies poor to moderate
 - 11 studies
 - Psychometric properties/diagnostic accuracy of GA instruments
 - 10-45 min, most often to describe health and functional status
 - Association of GA instruments w/ treatment toxicity: 8/3 studies
 - Mortality: 8/16 studies
 - Cancer treatment decision: 2/4 studies
 - 40-50% of decisions affected

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VES-13</td>
<td>68%</td>
<td>78%</td>
</tr>
<tr>
<td>GS</td>
<td>87%</td>
<td>61%</td>
</tr>
<tr>
<td>TRST</td>
<td>92%</td>
<td>47%</td>
</tr>
<tr>
<td>GFI</td>
<td>57%</td>
<td>86%</td>
</tr>
<tr>
<td>Fried</td>
<td>31%</td>
<td>91%</td>
</tr>
<tr>
<td>Barber</td>
<td>59%</td>
<td>79%</td>
</tr>
<tr>
<td>aCGA</td>
<td>51%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Conclusions

- Limited to another tool?
- SOF
 - Easy-to-use instrument to promptly recognize and act
- Research
 - Predictive value on outcome (EXPLORE SOF)
- Review on frailty screening methods
 - Even with high sensitivity, NPV ≤ 60%

Geriatric assessment in oncology

- 83 articles reporting on 73 studies
 - Quality of most studies poor to moderate
 - 11 studies
 - Psychometric properties/diagnostic accuracy of GA instruments
 - 10-45 min, most often to describe health and functional status
 - Association of GA instruments w/ treatment toxicity: 8/3 studies
 - Mortality: 8/16 studies
 - Cancer treatment decision: 2/4 studies
 - 40-50% of decisions affected

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VES-13</td>
<td>68%</td>
<td>78%</td>
</tr>
<tr>
<td>GS</td>
<td>87%</td>
<td>61%</td>
</tr>
<tr>
<td>TRST</td>
<td>92%</td>
<td>47%</td>
</tr>
<tr>
<td>GFI</td>
<td>57%</td>
<td>86%</td>
</tr>
<tr>
<td>Fried</td>
<td>31%</td>
<td>91%</td>
</tr>
<tr>
<td>Barber</td>
<td>59%</td>
<td>79%</td>
</tr>
<tr>
<td>aCGA</td>
<td>51%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Conclusions

- Feasible + some prediction
- Practical applications remain limited / deserve further research

Puts, J Natl Cancer Inst 2012

Tough to treat tumours: glioblastoma

- Nordic Clinical Brain Tumour Study Group
- Phase III
- 2000-2009 (in 2004, change of age eligibility to 65+ w/ chemo+XRT <65)
 - 1/ OS 2/ QoL & safety

Malmström, Lancet Oncol 2012
Tough to treat tumours: glioblastoma

- 342 patients (42% 70+)

Malmström, Lancet Oncol 2012

Conclusions

- Limitations
 - Standard XRT
 - Delay to start (46 days = 2 times temozolomide)
 - Less complete vs hypofractionated (72% vs 95%)
 - High cross-over rates
 - Limited data on QoL
 - Duration of study (10 years), low power (recruitment stop)

- Similar results as NOA-08 (Neuro-oncology Working Group of the German Cancer Society)
 - Temozolomide and hypofractionated XRT: standard options for 70+
 - Promoter methylation of O6-methylguanine-DNA methyltransferase gene → better OS w/ temozolomide

- Research
 - EORTC/NCIC: hypofractionated XRT + temozolomide in 65+

Malmström, Lancet Oncol 2012

Bevacizumab and lung cancer

- ECOG 4599
 - OS HR 0.79 (0.67-0.92) favouring bevacizumab + chemotherapy (paclitaxel + carboplatin) (but NS in 65+ subgroup)

- Retrospective cohort study of 4,168 Medicare beneficiaries 65+ w/ stage IIIB-IV non squamous cell NSCLC 2002-2007 (SEER)
 - 2002-2005 (2,666) chemotherapy
 - 2006-2007 (1,502) chemotherapy (79% chemotherapy + bevacizumab (21%)

- Impact on OS (Cox proportional hazards models and propensity score analyses)

JAMA The Journal of the American Medical Association

Zhu, JAMA 2012

Conclusions

- Limitations
 - Observational, lack of essential clinical details in SEER, sample size for bevacizumab group
 - Medicare-fee-for-service beneficiaries

- Addition of bevacizumab to chemotherapy is not associated w/ improvement in OS
 - Only 20% of bevacizumab prescription > 2006: medical oncologists remain circumspect and judicious in their use of new agents with uncertain benefit
 - Magnitude of benefit in cohort lower than in trial (9.7 vs 12.3 mth)

- Research
 - Prospective clinical trials with less narrow selection key (usually only 10% of “true” population included)?

Zhu, JAMA 2012

Management of elderly patients with breast cancer: updated recommendations of the International Society of Geriatric Oncology (SIGOG) and European Society of Breast Cancer Specialists (EUSOMA)

Biganzoli, Lancet Oncol 2012
General conclusions

- **Geriatric assessment and screening tool for oncologist**
 - Proven prognostic/predictive value of CGA domains (nutritional, mobility)
 - Some easy-to-use tools
 - Screening tool: 1 for all or all for 1? (G8, SOF, VES-13, etc.)
- **More research**
 - Specific trials (targeted treatments)
 - Less selective eligibility keys to faithfully represent general population
 - First challenge is to prove usefulness of GA on cancer outcome and cost (cost-effectiveness, QALY)
 - Oxaliplatin and colorectal cancer in elderly (Mullins, Cancer 2012)
 - Primary prophylaxis w/ G-CSF with diffuse aggressive NHL in elderly (Chan, J Clin Oncol 2012)
 - Rituximab and diffuse large B-cell NHL in elderly (Griffiths, Cancer 2012)