Modification of the G8 screening tool for frailty in elderly patients with cancer: the ELCAPA-07 cohort study

Claudia Tapia-Martinez, Florence Canoui-Poitrine, Sylvie Bastuji-Garin, Pierre Soubeyran, Simone Mathoulin-Pelissier, Elena Paillaud, Marie Laurent, Etienne Audureau
Geriatric assessment (GA) is recommended in older cancer patients (SIOG 2005)

Multidimensional assessment

to identify health and functional status deficiencies
to help implement directed multidisciplinary interventions

• GA is time- and resource-consuming and actually not necessary in all patients

► Screening tools for identifying patients in need of a complete GA

Ideally brief, simple tools with high sensitivity, negative predictive value and specificity
• Numerous tools developed
 • Mostly after expert opinions using indicators known for their association with mortality or GA domains
 G8, fTRST, VES-13, ...
 • Varying but *perfectible diagnostic performance properties*
 • Evidence for *heterogeneous performance across cancer localizations*

• **G8**
 • 8 *categorical items* covering
 1. Food intake; 2. BMI; 3. Weight loss; 4. Mobility;
 5. Neuropsychological problems; 6. # of medications;
 7. Self-rated health status; 8. Age
 • One of the *highest sensitivity* (>80% in 6 studies)
 • With a *lower specificity* (>60% in 4 studies)
To modify the G8 screening tool in older patients with cancer

- By following a detailed step-by-step statistical analysis
- By optimizing current items and adding potentially useful new items
- Targeting high discriminative power, usability and clinical relevance
ELCAPA cohort (Elderly CANcer PATients)

• French multicenter prospective cohort
• 70y and older patients with cancer (solid / hematologic malignancies)
• Patients included since 2007 at first referral to the geriatrician for GA
• Data collected relating to
cancer, cancer treatment and other medications, sociodemographic, clinical (GA) and biological features

► N=729 patients with G8 and GA data entered into the database at the time of analysis
Geriatric assessment (GA) as the reference procedure

≥1 deficiency across the following domains:

<table>
<thead>
<tr>
<th>Domains</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional status</td>
<td>ADL ≤ 5</td>
</tr>
<tr>
<td></td>
<td>IADL ≤ 7</td>
</tr>
<tr>
<td>Mobility</td>
<td>GUG ≥ 20 sec</td>
</tr>
<tr>
<td>Nutritional state</td>
<td>MNA ≤ 23.5</td>
</tr>
<tr>
<td>Cognitive state</td>
<td>MMSE ≤ 23</td>
</tr>
<tr>
<td>Depression</td>
<td>mini-GDS ≥ 1</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>CIRS-G (level 3/4)</td>
</tr>
</tbody>
</table>
Methods (3)

3-steps methodology

1 Candidate items selection

- Initial panel
 - G8 original items
 - G8 modified items
 - New items

optimizing thresholds / categorizations
functional, sociodemographic items
selected comorbidities / ECOG-PS

- Selection process
 - Univariate analysis
to assess the individual discriminative power of each item
 - Multiple Correspondence Analysis
 MCA to analyze the underlying structure and possible redundancies across variables
Methods (3)

3-steps methodology

1. Candidate items selection
2. Multivariate regression model

- **Logistic regression model** entering selected candidate items (step 1)
 - Stepwise backwards procedure to determine the independent predictors of an altered GA
 - Scaling and rounding of the coefficients (Cole algorithm)

- **Final model performance**
 - Discrimination: Area under the ROC curve (AUROC)
 - Calibration: Hosmer & Lemeshow

- **Multiple imputation** to account for missing data
Methods (3)

3-steps methodology

1. Candidate items selection
2. Multivariate regression model
3. Internal validation

- To check for evidence of «overoptimism» in the estimates
- To adjust performance indicators (AUROC) for overfitting
- *Boostrapping* techniques

 Repeated resampling with reconduction of all previous steps to assess stability
 Measure of optimism (x%)
Results (1)

Main characteristics (N=729)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M/F)</td>
<td>387 / 342</td>
<td>53.1% / 46.9%</td>
</tr>
<tr>
<td>Median age (Q1-Q3)</td>
<td>80</td>
<td>(76-84)</td>
</tr>
<tr>
<td>Top 5 cancer localization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>137</td>
<td>18.7%</td>
</tr>
<tr>
<td>Colorectal</td>
<td>131</td>
<td>17.9%</td>
</tr>
<tr>
<td>Urinary</td>
<td>118</td>
<td>16.1%</td>
</tr>
<tr>
<td>Digestive</td>
<td>117</td>
<td>16.0%</td>
</tr>
<tr>
<td>Prostate</td>
<td>99</td>
<td>13.5%</td>
</tr>
<tr>
<td>Metastasis</td>
<td>299</td>
<td>41.0%</td>
</tr>
<tr>
<td>Comorbidities level 3/4 (CIRS-G)</td>
<td>414</td>
<td>56.7%</td>
</tr>
</tbody>
</table>

G8 diagnostic performance

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value (CI95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (CI95)</td>
<td>87.2% (84.3 - 89.7)</td>
</tr>
<tr>
<td>Specificity (CI95)</td>
<td>57.7% (47.3 - 67.7)</td>
</tr>
<tr>
<td>Area under the ROC curve (CI95)</td>
<td>86.5% (83.5 - 89.6)</td>
</tr>
</tbody>
</table>
Step 1 Candidate items selection

22 items as the initial panel
14 items selected for multivariate analysis
after univariate analyses (p<0.1) and MCA

• Age (G8)
• Weight loss (G8)
• Depression / Dementia (G8)
• Self-rated health status (G8)
• # of medications (G8 ≥6)
• ≥1 fall during the last 6 months
• ECOG-PS
• Asthenia
• Incontinence
• Selected comorbidities: heart failure or CAD / diabetes / Renal failure / HBP / Respiratory failure
Results (2)

Step 1 Candidate items selection

22 items as the initial panel
14 items selected for multivariate analysis after univariate analyses (p<0.1) and MCA

- Age (G8)
- **Weight loss** (G8)
- Depression / Dementia (G8)
- Self-rated health status (G8)
- # of medications (G8 ≥6)
- ≥1 fall during the last 6 months
- ECOG-PS
- Asthenia
- Incontinence
- Selected comorbidities: heart failure / CAD / diabetes / Renal failure / HBP / Respiratory failure
Results (2)

Step 1 Candidate items selection

22 items as the initial panel
14 items selected for multivariate analyses (p<0.1) after univariate analyses

- Age (G8)
- **Weight loss (G8)**
- Depression / Dementia (G8)
- Self-rated health status (G8)
- # of medications (G8 ≥6)
- ≥1 fall during the last 6 months
- ECOG-PS
- Asthenia
- Incontinence
- Selected comorbidities: heart failure/ CAD / diabetes / Renal failure / HBP / Respiratory failure

![Weight loss vs Food intake diagram](image-url)
22 items as the initial panel
14 items selected for multivariate analysis after univariate analyses (p<0.1) and MCA

- Age (G8)
- Weight loss (G8)
- Depression / Dementia (G8)
- Self-rated health status (G8)
- # of medications (G8 ≥6)
- ≥1 fall during the last 6 months
- **ECOG-PS**
- Asthenia
- Incontinence
- Selected comorbidities: heart failure / CAD / diabetes / Renal failure / HBP / Respiratory failure
22 items as the initial panel
14 items selected for multivariate analysis after univariate analyses (p<0.1) and MCA

- Age (G8)
- Weight loss (G8)
- Depression / Dementia (G8)
- Self-rated health status (G8)
- # of medications (G8 ≥6)
- ≥1 fall during the last 6 months
- ECOG-PS
- Asthenia
- Incontinence
- Selected comorbidities: heart failure / diabetes / Renal failure / HBP / Respiratory failure

Step 1: Candidate items selection
Area under the ROC curve

Results (4)

Modified G8 AUC=91.6%

Original G8 AUC=86.5%

p-value = 0.0002
Results (5)

Area under the ROC curve per cancer localization

- Colorectal
- Digestive
- Breast
- Prostate
- Urinary
- Malignant Hemopathy

Modified G8
G8
Results (6)

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original G8 /17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤14 points</td>
<td>87.2%</td>
<td>57.7%</td>
</tr>
<tr>
<td>Modified G8 /35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥6 points</td>
<td>89.2%</td>
<td>79.0%</td>
</tr>
<tr>
<td>≥7 points</td>
<td>85.8%</td>
<td>88.4%</td>
</tr>
</tbody>
</table>

Step 3 Internal validation

- Optimism = 0.89% (±0.13%)
- AUC adjusted for overfitting = 91.6 – 0.9 = 90.7%
Discussion

• G8 modified:
 o **High sensitivity** and **high specificity**
 o **Higher homogeneity** across cancer localizations
 o 6 items easy to collect and clinically relevant

• **Interest of statistical methods** *complementary to expert judgment* to check and account for **overfitting** of development models to account for **missing data**

• Limits
 o **External validation needed**
 o Data unavailable at the time of analysis (e.g. detailed items within GA scales)
Validation and optimization is an ongoing and continuous process

Future works will focus on

- Investigating new candidate items
- Studying the impact of varying definitions for “impaired GA”
- The predictive ability of the tool towards different outcome parameters