Surgical Treatment for Primary and Secondary Liver Tumors in the Elderly

Daniel A. Anaya, MD
Associate Professor
Head, Section of Hepatobiliary Tumors
Department of Gastrointestinal Oncology
H. Lee Moffitt Cancer Center & Research Institute

Symposium – Liver Cancer in the Elderly
SIOG Annual Conference
Warsaw - Poland
November 10th, 2017

Surgical treatment - resection

- Hepatocellular carcinoma & Intrahepatic cholangiocarcinoma
- Colorectal liver metastasis & other (NET, etc.)

5-year OS HCC

Patterns of Care - CRCLM

- Substandard care – low resection rates
- Increasing age (no based on comorbidity)
- Predictor of “no-treatment/surgery”

Stage 4 CRC

- Colorectum

Orcutt S & Anaya DA. Ann Surg Oncol 2017
Kopetz S et al. JCO 2009

n=14,966
Patterns of Care - HCC

SEER database – n=1675
- 47% received no treatment

Objectives
- Evidence supporting the use of treatment – liver resection for the management of malignant liver tumors in the elderly
- Review specific outcomes following hepatectomy
 - Long-term / survival
 - Short-term / postoperative
 - Post-surgical recovery (patient-centered)
- Understand differences in relevant outcomes for the elderly population

Clinical case
- 80 y/o male referred with HCC
 - Obesity, steatosis, daily ETOH
- Exam normal - obesity
- Labs within normal limits
- Preserved liver function - Childs A
- AFP 659
- Non-metastatic

Clinical case
- Treatment options
 - Best supportive care – hospice
 - Sorafenib
 - Liver directed therapy – TACE / Yttrium90
 - Ablation
 - Transplantation
 - Resection
Clinical case

- Treatment options
 - Sorafenib
 - Liver directed therapy – TACE / Yttrium90
 - Ablation
 - Transplantation
 - Resection

Clinical case

- Comprehensive Geriatric Assessment
 - PACE / Frailty / SAOP3 – no deficits
- Discussed goals of therapy
- Expectations post-surgery
- Multidimensional care
 - Multidisciplinary liver tumor board discussion
 - Conservative yet “aggressive” curative approach
 - Evaluate goals in context of existing options
 - Perioperative multidisciplinary team

Clinical case

- Patient’s perspective
 - Will this prolong my life?
 - What are the risks?
 - Will I survive the surgery?
 - How is the recovery period?
 - Will I have a normal life afterwards?

Clinical case

- Hepatocellular carcinoma
 - N = 919 vs. reference age-adjusted
 - Equivalent 3-year OS
 - Difference in 5-10-year OS
 - Shorter in the older
 - Less years of life lost

Hepatocellular carcinoma

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Overall survival probability</th>
<th>3-year</th>
<th>5-year</th>
<th>10-year</th>
<th>Age (years)</th>
<th>Overall survival probability</th>
<th>3-year</th>
<th>5-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>0.780 (0.758-0.801)</td>
<td>0.780</td>
<td>0.758</td>
<td>0.801</td>
<td>40-49</td>
<td>0.780 (0.758-0.801)</td>
<td>0.780</td>
<td>0.758</td>
<td>0.801</td>
</tr>
<tr>
<td>50-59</td>
<td>0.601 (0.576-0.627)</td>
<td>0.601</td>
<td>0.576</td>
<td>0.627</td>
<td>50-59</td>
<td>0.601 (0.576-0.627)</td>
<td>0.601</td>
<td>0.576</td>
<td>0.627</td>
</tr>
<tr>
<td>60-69</td>
<td>0.448 (0.424-0.472)</td>
<td>0.448</td>
<td>0.424</td>
<td>0.472</td>
<td>60-69</td>
<td>0.448 (0.424-0.472)</td>
<td>0.448</td>
<td>0.424</td>
<td>0.472</td>
</tr>
<tr>
<td>70-79</td>
<td>0.361 (0.338-0.385)</td>
<td>0.361</td>
<td>0.338</td>
<td>0.385</td>
<td>70-79</td>
<td>0.361 (0.338-0.385)</td>
<td>0.361</td>
<td>0.338</td>
<td>0.385</td>
</tr>
<tr>
<td>80-89</td>
<td>0.300 (0.278-0.323)</td>
<td>0.300</td>
<td>0.278</td>
<td>0.323</td>
<td>80-89</td>
<td>0.300 (0.278-0.323)</td>
<td>0.300</td>
<td>0.278</td>
<td>0.323</td>
</tr>
<tr>
<td>90+</td>
<td>0.252 (0.232-0.273)</td>
<td>0.252</td>
<td>0.232</td>
<td>0.273</td>
<td>90+</td>
<td>0.252 (0.232-0.273)</td>
<td>0.252</td>
<td>0.232</td>
<td>0.273</td>
</tr>
</tbody>
</table>

Hepatocellular carcinoma

Colorectal liver metastasis

- Multiple retrospective studies
- Retrospective and heterogeneous
- Evolving field
- Limitations to published individual studies / findings

Abstracts reviewed
\[n = 1020 \]

Abstract titles reviewed
\[n = 3604 \]

Manuscripts reviewed
\[n = 71 \]

Quality of Life Studies
\[n = 2 \]

2584 articles excluded:

- Letters to editors, case reports, review articles

Mortality Studies
\[n = 38 \]

Survival Studies
\[n = 21 \]

Overall Survival – Risk difference

1 year OS

- Risk Diff: \[-4.1 \ (95\% CI: -7.6 \text{ to } -0.5); N=1705 pts\]

3 year OS

- Risk Diff: \[-5.8 \ (95\% CI: -10.8 \text{ to } -0.7); N=11054\]

5 year OS

- Risk Diff: \[-6.6 \ (95\% CI: -10.8 \text{ to } -2.4); N=3002\]

Hepatectomy – Overall Survival

1 year OS

- All Elderly: 85.7% (83.3-88.2); N=6; 764 pts
- Young: 89.7% (87.9-91.5); N=1175 pts
- Elderly: 85.5% (81.9-89.1); N=6; 530 pts

3 year OS

- All Elderly: 49.9% (45.4-54.5); N=12; 2565 pts
- Young: 56.6% (52.6-60.7); N=10; 8698 pts
- Elderly: 51.5% (46.9-56.1); N=10; 2356 pts

5 year OS

- All Elderly: 29.8% (19.0-40.7); N=15; 1625 pts
- Young: 39.0% (35.1-42.9); N=11; 2378 pts
- Elderly: 32.3% (28.8-35.7); N=11; 624 pts

Hepatectomy – Disease-free survival

1 year DFS

- All Elderly: 71.0% (63.2-78.8); N=7; 576 pts
- Young: 67.5% (61.5-73.6); N=4; 865 pts
- Elderly: 75.1% (69.4-80.7); N=4; 464 pts

3 year DFS

- All Elderly: 34.1% (27.7-40.5); N=10; 2339 pts
- Young: 33.9% (28.1-39.7); N=7; 7152 pts
- Elderly: 35.6% (27.4-43.7); N=7; 1999 pts

5 year DFS

- All Elderly: 27.5% (17.8-37.2); N=8; 242 pts
- Young: 29.7% (17.2-42.1); N=5; 354 pts
- Elderly: 29.3% (18.1-40.4); N=5; 189 pts
Impact on Survival

- Long-term outcomes multi-dependent
 - Efficacy of treatment
 - Risk of treatment – POP death?
 - Competing risks - comorbidities
- Can vary significantly by patient population / histology
 - Varies significantly on an individual basis

Clinical case

- Patient’s perspective
 - What are the risks?
 - Will I survive the surgery?

Postoperative Outcomes

- Short-term outcomes after surgery (90 d)
 - Mortality < 3% (5.6%)
 - POP complications = 20% (15-40%)
 - Improved dramatically last few decades
 - High-volume centers (perioperative expertise)
 - Less contraindications to surgery
 - Challenges to manage “sicker” patients (older)

Postoperative Mortality (30-day)

- Increasing age as a predictor

Mortality & Morbidity

- Increasing age as a predictor
Mortality & Morbidity
• Geriatric events and poor outcomes

Mortality & Morbidity
• Current data is limited by mix of population
• Inability to discriminate by relevant markers
 – Cirrhosis
 – CGA – geriatric events
 – Extent of resection
 – Comorbidities
 – Histology
 – Other (surgical approach)

Hepatectomy – POP Mortality

In-Hospital

<table>
<thead>
<tr>
<th>Age group</th>
<th>Risk difference</th>
<th>N</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Elderly</td>
<td>3.2% (1.5-4.9)</td>
<td>1555 pts</td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>1.2% (0.7-1.8)</td>
<td>5258 pts</td>
<td></td>
</tr>
<tr>
<td>Elderly</td>
<td>2.8% (0.9-4.8)</td>
<td>1318 pts</td>
<td></td>
</tr>
</tbody>
</table>

30-day

<table>
<thead>
<tr>
<th>Age group</th>
<th>Risk difference</th>
<th>N</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Elderly</td>
<td>2.8% (0.6-4.8)</td>
<td>1159 pts</td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>1.7% (0.7-2.6)</td>
<td>812 pts</td>
<td></td>
</tr>
<tr>
<td>Elderly</td>
<td>2.4% (0.03-5.1)</td>
<td>303 pts</td>
<td></td>
</tr>
</tbody>
</table>

60-day

<table>
<thead>
<tr>
<th>Age group</th>
<th>Risk difference</th>
<th>N</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Elderly</td>
<td>4.8% (1.8-6.8)</td>
<td>1491 pts</td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>1.7% (1.3-2.0)</td>
<td>7670 pts</td>
<td></td>
</tr>
<tr>
<td>Elderly</td>
<td>3.5% (1.5-5.6)</td>
<td>1907 pts</td>
<td></td>
</tr>
</tbody>
</table>

POP Mortality – Risk difference

<table>
<thead>
<tr>
<th>Time</th>
<th>Risk difference</th>
<th>N</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Hospital</td>
<td>1.3% (-0.5-3.2)</td>
<td>6576 pts</td>
<td></td>
</tr>
<tr>
<td>30-day</td>
<td>0.6% (-2.0-2.3)</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td>60-day</td>
<td>1.6% (-1.5-4.7)</td>
<td>8577</td>
<td></td>
</tr>
</tbody>
</table>

Mortality & Morbidity
• Overall POP mortality is increased in elderly patients (very old in particular and with associated risk factors)
 – Ranges 3-8%
• Selected patients (good risk profile [LM]) have an near-equivalent risk
• Better selection tools to identify those likely to tolerate resection
Clinical case

- Patient’s perspective
- How is the recovery period?
- Will I have a normal life afterwards?

Recovery and Quality of Life

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age group</th>
<th>60-70 years</th>
<th>> 70 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>Age group</td>
<td>60-70 years</td>
<td>> 70 years</td>
</tr>
<tr>
<td>All outcomes</td>
<td>8.2 (5.7)</td>
<td>7.3 (7.1)</td>
<td>7.7 (6.8)</td>
</tr>
<tr>
<td>Freedom from metastasis</td>
<td>8.2 (5.7)</td>
<td>7.3 (7.1)</td>
<td>7.7 (6.8)</td>
</tr>
<tr>
<td>Survival probability</td>
<td>8.2 (5.7)</td>
<td>7.3 (7.1)</td>
<td>7.7 (6.8)</td>
</tr>
<tr>
<td>All resections</td>
<td>54 (32%)</td>
<td>59 (34%)</td>
<td>56 (31%)</td>
</tr>
<tr>
<td>Freedom from metastasis</td>
<td>54 (32%)</td>
<td>59 (34%)</td>
<td>56 (31%)</td>
</tr>
<tr>
<td>Survival probability</td>
<td>54 (32%)</td>
<td>59 (34%)</td>
<td>56 (31%)</td>
</tr>
</tbody>
</table>

POP Transitional Care Needs (Post-acute care)

- Preoperative Treatment
- Postoperative Treatment

Cancer Care Conceptual Model

- Preoperative
- Demographic Variables
- Clinical Variables
- Cancer-Related Variables
- CGA (Elderly-Relevant Variables)
- Pre-Op HRQOL

- Postoperative
- HRQOL
- CGA
- Postoperative Outcomes

- Outcomes
- Oncological
- Transitional

Post-acute care - predictors

- In-hospital Complications
- Top Decile: Length of stay
- Hospital Cost
- Discharge Other than Home
- In-hospital Mortality

Abstracts reviewed: n=1020
Abstract titles reviewed: n=3604
Manuscripts reviewed: n=71
Quality of Life Studies: n=2
Survival Studies: n=21
Mortality Studies: n=16

Titles identified: n=5169
Duplicates removed: N=3988
Abstract titles reviewed: n=3984
Abstracts reviewed: n=3920
Manuscripts reviewed: n=71
2584 articles excluded: Letters to editors, case reports, review articles
949 studies excluded: Inclusion criteria not met

Inclusion Criteria:
- >25 elderly (>65yo) patients
- Study type: RCTs, case series, cohort studies
- First hepatectomy
- Raw data on CRLM
- OS: > 12 mo follow up
- DFS: > 12 mo follow up
- If >1 study from same dataset: most relevant selected

949 studies excluded:
- Inclusion criteria not met

Mortality Studies: n=16
Survival Studies: n=21
Quality of Life Studies: n=2

Cancer Surgery Transition Outcomes

- HRQOL
- CGA
- Postoperative Outcomes

Surgery Modifiers:
- Age
- Gender
- Preoperative
- Postoperative therapy

Stratification

CGA (Elderly-Relevant Variables)

Pre-Op HRQOL

Post-acute care - predictors

- In-hospital Complications
- Top Decile: Length of stay
- Hospital Cost
- Discharge Other than Home
- In-hospital Mortality

Stratification

CGA (Elderly-Relevant Variables)

Pre-Op HRQOL

Post-acute care - predictors

- In-hospital Complications
- Top Decile: Length of stay
- Hospital Cost
- Discharge Other than Home
- In-hospital Mortality

Stratification

CGA (Elderly-Relevant Variables)

Pre-Op HRQOL
Post-acute care - predictors

ACS-NSQIP N=55,238

Cancer Care Conceptual Model

Preoperative Treatment Postoperative Outcomes

Outcomes

Age
Demographic Variables
Clinical Variables
Cancer-Related Variables
CGA (Elderly-Relevant Variables)
Pre-Op HRQOL

Cancer Surgery

Surgery Modifiers:
- Type/Extent
- Ostomy
- Postoperative complications
- Postoperative therapy

HRQOL Post-Op Score & Score (from Pre-Op)

Preoperative Outcomes

Oncological Outcomes

Post-acute care - Survival

PAC - HRQoL

Mason M & Anaya DA. SSO 2016

SF-36

PCS

MCS

PAC - HRQoL

N= 329

18%
PAC

82%
No PAC
Transitional care needs – PAC

Mason M & Anaya DA. SSO 2016

Improvements in the recovery phase are essential – linked to PCO (PAC needs and HRQoL), short- and long-term outcomes

Patient-centered outcomes

• Recovery following major surgery appears to be delayed in older patients – PAC needs
 – Predictors: complications, geriatric conditions, baseline function, increasing age
• PAC associated with bad outcomes
 – Inherent slow recovery (PCO)
 – Also – worse survival, worse HRQoL

Clinical case

• Medical work-up (Day 0)
• Counseling in anticipation of possible Sx
• HVPV/gradient measurement
• TACE followed by PVE (Day 14)
• Re-evaluation clinic visit, labs/imaging (Day 49)
• Disease control/biology
• Contralateral liver hypertrophy Tolerability to therapy
• Extended right hepatectomy (Day 56)

Summary and Conclusions

• Liver resection is currently the only curative treatment for the majority of patients with liver malignancies
• Elderly patients represent an increasing number of those with liver tumors and are amenable to curative intent - surgery
Summary and Conclusions

• Liver resection provides survival benefit in elderly patients with liver tumors in whom competing causes of early mortality are not present.
• POP mortality and morbidity is increased but can be mitigated and remain within acceptable standards – selection process/modify RF.

Summary and Conclusions

• Recovery following surgery is the key to maintaining good function and quality of life while minimizing adverse events and poor outcomes.
• Systematic initiatives are required (multidimensional) to accomplish this goal.

Daniel.Anaya@moffitt.org