Pre-operative and Operative Choices for Elderly Lung Cancer Patients

Michael Jaklitsch, MD
Associate Professor
Division of Thoracic Surgery

BRIGHAM AND WOMEN'S HOSPITAL

Harvard Medical School
Lung Cancer in the Elderly is a Very Common Problem

- Life expectancy US: 77.8 years
- Median age of lung cancer: 71 years in US
- Preserved function of many elderly
- 2nd most common diagnosed, most lethal
- 2008: 215,020 Americans diagnosed
 161,840 Americans lung CA deaths
Surgical Decisions in The Elderly Are Not Straightforward

- Most lung nodules are cancer: 2 cm SPN in an 80-year old female smoker has > 70% probability of cancer in US and Europe.
- Untreated Lung CA short life expectancy
- Early stage is common, so surgery can cure
- **But:** Higher surgical morbidity and mortality (death in 1 month?)
- **First choice:** Should you even tell the patient?
Medical Paternalism

- Don’t tell
- No treatment possible
- Protect the (childlike?) elderly
- Family may request

BUT:
- Deprive choices
- Future plans / treatment
- No chance to avoid symptoms

Natural History of Lung Cancer is Dismal

- Short life expectancy: 9 to 18 months, with 1 to 3 months of suffering.
- Hemoptysis, malignant pleural effusion, malignant pericardial effusion, airway obstruction,
- Brain mets, painful boney mets
Competing Influences

- Life expectancy exceeds natural history of lung cancer.
- Everyone has a 50% probability of 5 to 15 years, with preserved function for most of that time.
- What is not known is average years of independence remaining.

AVERAGE YEARS OF LIFE REMAINING

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>White</th>
<th>Black</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>15</td>
<td>13</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>70-75</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>75-80</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>80-85</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>≥ 85</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Worst Case Scenario

• Patient is not told
• Lung cancer death rarely peaceful
• Symptoms develop – Emergency visit
• Another physician reveals it is likely lung cancer AND nodule was seen months ago!

• Now suffering, mistrust, and anger
Worst Case Avoided by Conversation with Patient

- There is an abnormality on your chest x-ray. Do you want to see it?

- I think there is a good chance this is a lung cancer.

- Do you have symptoms of...?
Elderly Patients WANT to know if Cancer is Diagnosis

- Survey of 270 patients ≥ 65 years old
- 88% want as much information as possible
- 1% undecided
- 11% preferred not to know information
- Limited ambulation: 28% preferred NOT to know

Ajaj, BMJ 2001
Let The Patient Decide

• Inform

• Offer choices of:
 – Do nothing
 – Work-up
 – Meet experts

• No loss of trust

• If no treatment now, early symptoms lead to early palliation*

*Surgery
Individualize Functional Status and Stage to Make Decisions

- History and Physical
- Geriatric Assessment
- CT / Head scan, possible PET scan
- Discuss wishes / bias of patient and family
- Possible pre-resection surgical staging
Radiographic Stage IV

- In general, prove it.

- Lifelong exposure to other causes of radiographic findings

- Biopsies can be tested for EGFR mutations, other maintenance strategies
Radiographic Stage III

- In general, prove it.
- Lifelong exposure to other causes of adenopathy
- Stage IIIA multi-modality treatment success may be age / functional status related.
- Harshness of treatment
Stage I and II NSCLC in Elderly Patients

- Offer choices:
 - Do nothing, but watch and wait
 - Full workup and possible resection
 - Diagnosis, and locally ablative therapies
 - Diagnosis and radiotherapy
 - Diagnosis alone

- Initial interview with family: altered expectations, recent history

- May require multiple interviews
Expectations

- Long incisions
- Painful
- Will never return home
Thoracoscopy Reduces Risk

- Overall mortality < 1%
- 2% mortality if FEV-1 < 1 liter
- 10% mortality if Karnofsky scale < 8 (unable to carry on normal activity)

Jaklitsch.. Chest 1996 (110):751-8
Age Used to be a Risk Factor For Death After Thoracotomy

Lung Cancer Study Group (LCSG) 1983 data on open lobectomy or less:

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Cases/Total</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 70 years</td>
<td>27/368</td>
<td>7.3%</td>
</tr>
<tr>
<td>≥ 80 years</td>
<td>3/27</td>
<td>11%</td>
</tr>
</tbody>
</table>

Brigham VATS 1993-96:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Cases/Total</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobectomy or segmentectomy</td>
<td>0/32</td>
<td>≥ 70 years</td>
</tr>
<tr>
<td>Lesser resections</td>
<td>1/156</td>
<td>≥ 70 years</td>
</tr>
</tbody>
</table>

ACOSOG Z0030 1999-2004:

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Cases/Total</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-79 years</td>
<td>8/361 (2.2%)</td>
<td></td>
</tr>
<tr>
<td>≥ 80 years</td>
<td>2/70 (2.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Ginsberg, et al, JTCVS, 1983
Risks Related to Magnitude of Muscle Divided and Lung Resected

- Pneumonectomy
- Lobectomy
- Segmentectomy
- Wedge
- Needle Bx and XRT
- RFA or cryoablation

Segmental Resections (N1)

Locally Ablative (No nodes)

Thoracotomy Versus VATS
Surgeon’s Choice of Resection

• Lobectomy:
 May have up to 10% mortality in elderly
 Higher morbidity
 Very low recurrence rate (6%)

• Thoracosscopic Wedge:
 Less than 1% mortality rate, even in elderly
 Less morbidity
 May have a 17% local recurrence rate
% Surviving

- Lobectomy
- Limited Resection

log rank p=0.088 (one-tailed)

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>Lobectomy:</th>
<th>Ltd. Resect.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>24</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>36</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>48</td>
<td>22</td>
<td>11</td>
</tr>
</tbody>
</table>

Time in Months

[Graph showing survival rates over time for Lobectomy and Limited Resection with number at risk at each time point]
Elderly Stage I NSCLC
Surgical Resections at BWH

- 1134 SPNs wedged at BWH (1989-98)
- 563 were proven NSCLC
- 98 were ≥ 75 yrs (elderly), 465 were <75 yrs
- Surgeon’s choice to proceed with anatomic lung resection or treat with wedge alone

Jaklitsch, Proc ASCO 1999:18;471a
Surgical Treatment by Wedge Resection Increases with Age

Percent

Age

% Wedge
% Lobectomy

< 65 65 - 69 70 - 74 75 - 79 > 79
14 17 26 36 63

P = 0.03 P = 0.0007 P = 0.0001
Survival for Elderly NSCLC Patients

Median follow-up 15 months
1) Elderly patients (>75 yrs) are more likely to receive a wedge resection as definitive surgical therapy for Stage I NSCLC than younger patients at BWH, irrespective of performance status or comorbid lung disease.

2) Long-term survival in the elderly patients selected for surgical treatment of Stage I NSCLC appears to not be affected by surgeon’s choice of wedge versus lobectomy.

Jaklitsch, Proc ASCO 1999:18;471a
SEER Lung CA Stats

<table>
<thead>
<tr>
<th></th>
<th>< 65 yrs</th>
<th>65 - 74 yrs</th>
<th>≥75 yrs</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=5057)</td>
<td>(n=6073)</td>
<td>(n=3425)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males, %</td>
<td>55</td>
<td>57</td>
<td>54</td>
<td>0.0062</td>
</tr>
<tr>
<td>Stage I, %</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td><0.0001</td>
</tr>
<tr>
<td>Histology, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous</td>
<td>26</td>
<td>35</td>
<td>35</td>
<td><0.0001</td>
</tr>
<tr>
<td>AdenoCa</td>
<td>58</td>
<td>50</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Large Cell</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Adenosq</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.6</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Curative surgery

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Curative surgery</th>
<th>No curative surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td>70%</td>
<td></td>
</tr>
</tbody>
</table>

p<0.0001
Type of curative surgery

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Lobectomies</th>
<th>Pneumonectomies</th>
<th>Limited resections</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td>100%</td>
<td>81%</td>
<td>81%</td>
</tr>
<tr>
<td>65-74</td>
<td>100%</td>
<td>81%</td>
<td>100%</td>
</tr>
<tr>
<td>>75</td>
<td>100%</td>
<td>78%</td>
<td>100%</td>
</tr>
</tbody>
</table>

p<0.0001

Mery, Chest 2001;120:176S
Overall mortality
No curative surgery

Survival (mos)

< 65 yrs
65 – 74 yrs
≥ 75 yrs

p=0.0025
Overall mortality
65 - 74 yrs

Survival (mos)
Overall mortality

≥ 75 yrs

Lobectomies

Limited rsct

Survival (mos) p = NS

0 10 20 30 40 50 60 70 80

0 .2 .4 .6 .8 1

0 1 2 3 4 5 6 7 8
Thoracoscopic Guided RFA or Cryo-therapy

• General anesthesia

• Thoracoscopic inspection of pleural space and sampling of N1 nodes

• Ablative therapy may be better with atelectatic lung
Intraoperative RFA / Cryotherapy

- N = 10
- Age median 60 yrs (range 40 – 85 years)
- Average size 3 cm

Locally Ablative Therapies: Cryo

• 6 Lung CA, 4 mets
• Combined wedge and Cryo = 4
• No morbidity
• LOS 2 days
• 4 no re-growth in 13.5 months
• 5 re-growth starting 12.8 months

HM, DOB 6/17/24, 79 yo male with NSCLC of left lower lobe, treated with CT-guided RFA. Disease-free 5 years later.
Traditional Outcome Measures Are Not Really Helpful

- Morbidity, mortality
- Disease-free Survival
- Recurrence

We Need Measures of:
- Loss of independence
- Time to return home
- Functional impairment
- Nursing home risk
Collaborations

• Risk Assessment for Invasive Procedures

• Competitive Outcomes: Longer impaired life or shorter quality life

• Working together, Can we turn lung cancer into a chronic disease?
Winter Sunset on Commonwealth Avenue