Predicting Chemotherapy Toxicity in Older Adults With Cancer: A Prospective Multicenter Study

Arti Hurria, MD
Director, Cancer and Aging Research Program
City of Hope
A brief, comprehensive measure is needed that identifies the seemingly fit older individual at risk for chemotherapy toxicity.
Conceptual Model

Labs
1) Renal function
 -Creatinine clearance
2) Hepatic function
 -Liver function tests
3) Hematologic function
 -WBC
 -Hemoglobin

Sociodemographic
1) Age
2) Gender
3) Race/ethnicity
4) Education
5) Marital status
6) Living companion

Chemotherapy Toxicity

Geriatric Assessment
1) Functional status
2) Comorbidity
3) Cognition
4) Psychological state
5) Social support
6) Nutritional status

Tumor & Treatment
1) Tumor type
2) Tumor stage
3) Chemotherapy
 -Mono- vs Poly- chemo
 -Dosage
4) Growth Factor Use
Objective

1. Develop a predictive model for chemotherapy toxicity in older adults
 - Sociodemographic characteristics
 - Tumor characteristics
 - Treatment characteristics
 - Laboratory values
 - Geriatric assessment parameters

2. Internally validate the model
Study Schema

Eligibility criteria
- Age 65 or older
- Diagnosis of cancer
- To start a new chemotherapy regimen

Pre-chemo Assessment

End chemo

Chemotherapy toxicity grading (2 MDs)

NCI CTCAE v3.0

- Sample size: 500 patients
- 7 participating institutions (Cancer and Aging Research Group)
Geriatric Assessment

- **Functional Status:**
 - Activities of Daily Living
 - Instrumental Activities of Daily Living
 - Karnofsky Performance Rating Scale
 - Timed Up & Go
 - Number of Falls in Last 6 Months

- **Comorbidity:** Physical Health Section

- **Cognition:** Blessed Orientation-Memory-Concentration Test

- **Psychological:** Hospital Anxiety and Depression Scale

- **Social Functioning:** MOS Social Activity Limitations Measure

- **Social Support:**
 - MOS Social Support Survey: Emotional and Tangible Subscales
 - Seeman and Berkman Social Ties

- **Nutrition:**
 - % Unintentional Weight Loss in the Last 6 Months
 - Body Mass Index

Hurria et al. Cancer 2005, JCO 2011
1. **Bivariate analysis:**
 - Youden Index: cut-off point for toxicity
 - Chi-square test: association of variables with toxicity

2. **Multivariate Logistic Regression:**
 - Variables: \(p < 0.1 \) in bivariate analysis or clinically relevant
 - Predictive model development
 - Individual items in the GA measures
 - Best-subsets selection method
 - Goodness of fit & Receiver operating characteristics

3. **Internal Validation**
 - 10-fold Cross-Validation
Results
Patient Characteristics

of Patients 500

Mean age 73 years
(Range) (65-91)

Education (college educated) 61%

Employment (retired) 83%

Race (white) 85%

Gender

Female 56%
Male 44%
Cancer Stage: 61% stage IV
Treatment: 70% polychemotherapy
18% WBC growth factor with cycle 1
Geriatric Assessment Results

- 43% require assistance with IADL
- 18% fallen in last 6 months
- 44% with > 2 co-morbidities
- 6% with cognitive impairment (B-OMC > 10)
- 16% with anxiety/depression (HADS > 14)
- 38% with weight loss ≥ 5%
- 12% have a BMI < 22
Toxicity Summary

Incidence

- Grade 3-5: 53%
- Grade 4: 39%
- Grade 3: 18%
- Grade 5: 5%

All Types

- Grade 3-5: 43%
- Grade 4: 12%
- Grade 3: 26%
- Grade 5: 2%

Heme

- Grade 3-5: 40%
- Grade 4: 8%
- Grade 3: 18%
- Grade 5: 0%

Non-Heme

- Grade 3-5: 50%
- Grade 4: 5%
- Grade 3: 12%
- Grade 5: 0%
Most Common Gr 3-5 Toxicities

Heme

<table>
<thead>
<tr>
<th>Grade</th>
<th>ANC</th>
<th>WBC</th>
<th>Hb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3-5</td>
<td>11%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Grade 4</td>
<td>3%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Grade 3</td>
<td>8%</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>Grade 5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Non-heme

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fatigue</th>
<th>Infection</th>
<th>Dehydration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3-5</td>
<td>16%</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>Grade 4</td>
<td>0%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Grade 3</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Grade 5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Bivariate Analysis ($p<0.1$)

Labs:
1) Albumin ≤ 3.6
2) Hemoglobin <11

Sociodemographic:
1) Age ≥ 72

Chemotherapy Toxicity

Tumor & Treatment:
1) GI or GU tumor type

Geriatric Assessment:
1) Functional status
 - IADL (3 items)
 - MOS Physical (4 items)
 - MD-rated KPS
 - Timed Up & Go
 - Falls in Last 6 Months
2) Comorbidities
 - Liver/Kidney disease
 - Hearing Impairment
3) Cognition
 - B-OMC ≥ 6
4) Psychological
 - HADS (4 items)
5) Social Functioning
 - MOS Social Activity (2 items)
6) Nutrition
 - Unintentional weight loss
 - BMI ≤ 26.5
Predictors of Toxicity

- Age ≥ 72 years
- GI or GU Cancer
- Standard Dose
- Poly-chemotherapy
- Hemoglobin (male: <11, female: <10)
- Creatinine Clearance (Jelliffe-ideal wt <34)
- Fall(s) in last 6 months
- Hearing impairment (fair or worse)
- Limited in walking 1 block (MOS)
- Assistance required in medication intake (IADL)
- Decreased social activity (MOS)
Predictive Model

<table>
<thead>
<tr>
<th>Risk factors for Gr. 3-5 Toxicity</th>
<th>OR (95% CI)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 72 yrs</td>
<td>1.8 (1.2-2.7)</td>
<td>2</td>
</tr>
<tr>
<td>GI/GU cancer</td>
<td>2.2 (1.4-3.3)</td>
<td>2</td>
</tr>
<tr>
<td>Standard dose</td>
<td>2.1 (1.3-3.5)</td>
<td>2</td>
</tr>
<tr>
<td>Poly-chemotherapy</td>
<td>1.8 (1.1-2.7)</td>
<td>2</td>
</tr>
<tr>
<td>Hemoglobin (male: <11, female: <10)</td>
<td>2.2 (1.1-4.3)</td>
<td>3</td>
</tr>
<tr>
<td>Creatinine Clearance (Jelliffe – ideal wt) <34</td>
<td>2.5 (1.2-5.6)</td>
<td>3</td>
</tr>
<tr>
<td>1 or more falls in last 6 months</td>
<td>2.3 (1.3-3.9)</td>
<td>3</td>
</tr>
<tr>
<td>Hearing impairment (fair or worse)</td>
<td>1.6 (1.0-2.6)</td>
<td>2</td>
</tr>
<tr>
<td>Limited in walking 1 block (MOS)</td>
<td>1.8 (1.1-3.1)</td>
<td>2</td>
</tr>
<tr>
<td>Assistance required in medication intake</td>
<td>1.4 (0.6-3.1)</td>
<td>1</td>
</tr>
<tr>
<td>Decreased social activity (MOS)</td>
<td>1.3 (0.9-2.0)</td>
<td>1</td>
</tr>
</tbody>
</table>

Possible score range: **0-23**
Model Performance: Prevalence of Toxicity by Score

ROC: 0.72
Model Performance: Goodness of fit

Median score (Range): 8 (0-21)
MD-rated KPS vs. Predictive Model

Chi-square test $p=0.19$

Chi-square test $p<.0001$
Internal Validation:
The 10-fold Cross Validation

- Predictive Model (total risk score as predictor):
 - ROC (original) = 0.72
 - Average ROC (validation) = 0.72 (Range: 0.62-0.84)
Conclusions

Among older adults receiving chemotherapy:

- Grade 3-5 toxicity is common (53%)
- A predictive model was developed to stratify risk of toxicity
- Specific GA variables independently predicted risk of toxicity

Limitations

- Several tumor types
- Treatment per MD discretion
 - Heterogeneous treatment regimens
Ongoing Directions

- Externally validate model
 - 250 patient validation study
- Specific tumor types
 - Breast Cancer Adjuvant (R01)
 - Cooperative Group - Alliance (CALGB) Studies
 - Acute Leukemia (Klepin/Ritchie)
 - Colon Cancer (Jackson)
 - Breast Cancer (Hurria)
Acknowledgments

The Patients who Participated
Their Doctors
The American Society of Clinical Oncology
The Association of Specialty Professors
The National Institute on Aging
Cancer and Aging Research Group

Memorial Sloan-Kettering
William Tew, MD
Stuart Lichtman, MD

University of Rochester
Supriya Mohile, MD, MPH

Case Western Reserve
Cynthia Owusu, MD

SUNY Upstate
Ajeet Gajra, MD

Wake Forest University
Heidi Klepin, MD

Yale University
Cary Gross, MD

City of Hope
Vani Katheria, MS
Kayo Togawa, MPH
Thank you!