News in Oncology

Ravindran Kanesvaran
Division of Medical Oncology, National Cancer Centre Singapore
Assoc Professor, Duke-NUS Medical School
President Elect, SIOG
Disclosures

• Speaker Bureau: Pfizer, J&J, Sanofi, Novartis, MSD, Eisai, Ipsen

• Advisory Board/ Consultant: GSK, Novartis, Bayer, J&J, Mundipharma, Astellas, MSD, BMS, Amgen, Ipsen

• Research support: Sanofi, J&J, Astellas, Eisai

• No relevant disclosures for this talk
Outline

• SIOG News
• Geriatric Oncology studies
• SIOG Task Force Guideline Updates
• Summary

P.S. Will cover studies / publications since last SIOG except JGO publications which will be discussed by Drs Mohile and Rostoft
SIOG : Public Policy Approach
SIOG Treviso Course 2019

Academic year: 2019

Phase 1: A 4 day- course in Treviso, Italy from June 26-29, 2019
Università Cattolica del Sacro Cuore - Centro Studi Achille e Linda Lorenzon - Viale Guglielmo Oberdan 5, 31100 Treviso, Italy

Phase 2: this phase consists in attending the SIOG 2019 Annual Conference in Geneva, Switzerland (November 2019)

University Certificate will be provided to participants at the end of phase II on the proviso of attendance to Phase I and Phase II of the course.
Outline

• SIOG News
• Geriatric Oncology studies

Publications
ASCO 2019 GO Highlights
ESMO 2019 GO Highlights
• SIOG Taskforce Guideline Updates
• Summary
Communication With Older Patients With Cancer Using Geriatric Assessment
A Cluster-Randomized Clinical Trial From the National Cancer Institute Community Oncology Research Program

Supriya G. Mohile, MD, MS; Ronald M. Epstein, MD; Arti Hurria, MD; Charles E. Heckler, PhD, MS; Beverly Canin; Eva Culakova, PhD, MS; Paul Duberstein, PhD; Nikesh Gilmore, PhD; Huiwen Xu, MHA; Sandy Plumb, BS; Megan Wells, MPH; Lisa M. Lowenstein, PhD; Marie A. Flannery, PhD; Michelle Janel-Sims, PhD, MPH; Allison Magnuson, DO; Kah Poh Loh, MB, BCH, BAO; Amber S. Kleckner, PhD; Karen M. Mustian, PhD, MPH; Judith O. Hopkins, MD; Jane Jijun Liu, MD; Jodi Geer; Rita Gorawara-Bhat, PhD; Gary R. Morrow, PhD, MS; William Dale, MD, PhD

Key Points

Question Does providing a summary of geriatric assessment results and geriatric assessment-guided recommendations to oncologists improve communication about aging-related concerns?

Findings In this nationwide cluster-randomized clinical trial of 31 community oncology practices that enrolled 541 older patients with advanced cancer, providing a geriatric assessment summary with recommendations to oncologists improved postvisit patient satisfaction and caregiver satisfaction and increased the number of conversations about aging-related concerns. These results were significantly different between the intervention and usual care groups.

Meaning Integrating geriatric assessment into community oncology care improves patient and caregiver satisfaction and communication about aging-related concerns.

A. Patient satisfaction with communication about aging-related concerns. B. Patient satisfaction with overall care. C. Caregiver satisfaction with communication about the patient's age-related conditions. Scores were derived using modified versions of the Health Care Climate Questionnaire. The telephone assessment was 7 to 14 days after the audio-recorded clinic visit.
Factors Associated With Age Disparities Among Cancer Clinical Trial Participants

Ethan B. Ludmir, MD; Walker Mainwaring, BA; Timothy A. Lin, BA; Austin B. Miller, BS; Amit Jethanandani, MPH; Andres F. Espinoza, BS; Jacob J. Mandel, MD; Steven H. Lin, MD, PhD; Benjamin D. Smith, MD; Grace L. Smith, MD, PhD, MPH; Noam A. VanderWalde, MD; Bruce D. Minsky, MD; Albert C. Koong, MD, PhD; Thomas E. Stinchcombe, MD; Reshma Jagsi, MD, DPhil; Daniel R. Gomez, MD; Charles R. Thomas Jr, MD; C. David Fuller, MD, PhD

Figure: Flowchart of Clinical Trial Screening, Eligibility, and Inclusion

Key Points

Question What is the prevalence of age disparities among participants in randomized clinical trials in oncology, and what factors are associated with heightened age disparities?

Findings In an analysis of 302 randomized clinical trials collectively comprising 262,354 participants, trial participants were significantly younger than the population by disease site. Industry-funded trials and trials testing a targeted therapy had larger age disparities; age imbalances among trial participants appear to be widening over time.

Meaning Age disparities among cancer trial participants are pervasive, worsening, and associated with industry sponsorship; future strategies must address these inequalities to ensure generalizability of trial results as well as trial access equity.
Clinical Trial Accrual at Initial Course of Therapy for Cancer and Its Impact on Survival

Nicholas G. Zaorsky, MD, MS; Ying Zhang, PhD; Vonn Walter, PhD; Leila T. Tchelebi, MD; Vernon M. Chinchilli, PhD; and Niraj J. Gusani, MD, MS

Table 1. Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Enrolled n (%)</th>
<th>Not Enrolled n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, N</td>
<td>11,576</td>
<td>12,086,105</td>
</tr>
<tr>
<td>Age, median (IQR), y</td>
<td>59 (51–68)</td>
<td>65 (55–74)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5,931 (51.2)</td>
<td>6,499,323 (53.8)</td>
</tr>
<tr>
<td>Female</td>
<td>6,445 (48.8)</td>
<td>5,586,782 (46.2)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>10,183 (88.0)</td>
<td>10,252,942 (84.8)</td>
</tr>
<tr>
<td>Black</td>
<td>823 (7.1)</td>
<td>1,266,023 (10.5)</td>
</tr>
<tr>
<td>Other</td>
<td>570 (4.9)</td>
<td>567,140 (4.7)</td>
</tr>
</tbody>
</table>

Figure 3. Kaplan-Meier cumulative rates for stratified groups using a Weibull method.

Zaorsky N. et al JNCCN 2019
Perspectives on Geriatric Oncology Research presented at the 2019 American Society of Clinical Oncology Genitourinary Cancers Symposium

John Shen a,*, Mark Prentice b, YaoYao Pollock c, Marcos Franca d, Ravindran Kanesvaran e

a University of California, Los Angeles, Department of Medicine, Division of Hematology/Oncology, United States of America
b University College London Hospital, Department of Radiation Oncology, United Kingdom
c University of California, San Francisco, Department of Medicine, Division of Hematology/Oncology, United States of America
d Centro de Cancer de Brasilia, Oncologia Clinica, Brazil
e National Cancer Centre Singapore, Division of Medical Oncology, Singapore

Perspectives on geriatric oncology research presented at the 2019 St. Gallen international breast cancer conference

Nicolò Matteo Luca Battisti a,*, Roman Dubianski b

a Department of Medicine, Breast Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
b Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Department of Breast Cancer and Reconstructive Surgery, ul. W.K. Biegenzweig 5, 02-781 Warsaw, Poland
A single-institution cohort study of 1892 patients exploring co-management of patients undergoing elective oncologic surgeries by the geriatric service.

Although co-managed patients had a longer length of stay (7 vs. 6 days; $p < .0001$), 90-day post-operative mortality was reduced compared to those who were not referred to the geriatric service [$p = .0002$]

There was no difference in 90-day adverse surgical events
Geriatric co-management reduces postop mortality

Adjusted Odds of 90 day Postoperative Mortality based on Geriatric co-management

Geriatric co-management is associated with reduced 90 day postoperative mortality among patients aged 75+ with cancer, Soo Jung Kim (US)

95% CI 0.28-0.67, p=0.0002
The (GOSAFE) study sought to characterize quality of life (QOL) and functional recovery in patients aged ≥70 following elective major oncologic surgery.

On pre-operative assessment, one-third of the patients were frail (G8 >14), one third had major comorbidities (Charlson comorbidity index > 6), and 22% had cognitive impairment according to MiniCog.

At 90 days, 29% had improved/maintained function (a composite of ADL independence, Timed Up and Go <20 s, and normal mini-Cog), whereas **31%** experienced a decline in all three domains.

Once mature, the study aims to create a “user-friendly” tool to predict outcomes that matter to patients.
30-90 day Postoperative outcomes

506 pts

<table>
<thead>
<tr>
<th>Mortality Status</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day Mortality</td>
<td>25 pts (5%)</td>
</tr>
<tr>
<td>90-day Mortality</td>
<td>35 pts (7%)</td>
</tr>
<tr>
<td>Fit (ADL>5, TUG<20sec, Minicog>2)</td>
<td>18/329 (4.2%)</td>
</tr>
<tr>
<td>Two impaired (ADL>5, TUG<20sec, Minicog>2)</td>
<td>2/23 (8.7%)</td>
</tr>
<tr>
<td>All impaired (ADL>5, TUG<20sec, Minicog>2)</td>
<td>2/9 (22.2%)</td>
</tr>
</tbody>
</table>

471 pts

<table>
<thead>
<tr>
<th>Morbidity Status</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-day morbidity</td>
<td>236 (50%), 105>1 (22.3%)</td>
</tr>
<tr>
<td>CD 1-2</td>
<td>183 (38.8%)</td>
</tr>
<tr>
<td>CD 3-4</td>
<td>53 (11.2%)</td>
</tr>
<tr>
<td>Fit (ADL>5, TUG<20sec, Minicog>2)</td>
<td>144/311 (46.3%)</td>
</tr>
<tr>
<td>Two impaired (ADL>5, TUG<20sec, Minicog>2)</td>
<td>16/21 (76%)</td>
</tr>
<tr>
<td>All impaired (ADL>5, TUG<20sec, Minicog>2)</td>
<td>5/7 (71%)</td>
</tr>
</tbody>
</table>
EQ-5D VAS (471pts)

Baseline VAS vs 3 months VAS

69 (15.6%)
296 (67.0%)
49 (11.1%)
28 (6.3%)
001 Outcomes that matter to patients? The Geriatric Oncology Surgical Assessment and Functional recovery after surgery (GOSAFE) study: subgroup analysis of 440 patients undergoing colorectal cancer surgery, Nicole Marie Saur (US)

K01 Patient Reported Outcomes Measures (PROMs) in geriatric patients undergoing major surgery for solid cancer. 90-day preliminary report on 643 patients from the Geriatric Oncology Surgical Assessment and Functional recovery after Surgery (GOSAFE) study, Isacco Monroni (IT)
Using machine learning to predict mortality in older patients with cancer:

Decision tree and random forest analyses from the ELCAPA and ONCODAGE prospective cohorts

Etienne Audureau, Pierre-Louis Soubeyran, Claudia Martinez-Tapia, Carine A. Bellera, Sylvie Bastuji-Garin, Pascaline Boudou-Rouquette, Muriel Rainfray, Anne Chahwakilian, Thomas Grellety, Olivier Hanon, Simone Mathoulin-Pélissier, Elena Paillaud, Florence Canouli-Poitrine

Presented By Etienne Audureau at 2019 ASCO Annual Meeting
Background (2)

Predicting survival in older patients with cancer

- Difficulties in older patients with cancer
 - High heterogeneity according to cancer site, severity and underlying vulnerability of patients
 Should global or site-specific prognostic models be developed?
 - Collinearity between intertwined factors e.g. function, mobility and performance status

- Limits of conventional approaches to statistical analysis (Cox models)
 - Useful to quantify relative importance of independent predictors (Hazard ratios)
 - But unfit to deal with highly heterogeneous populations and to detect specific relationships in specific subgroups

- Decision-tree based approaches
 - Effective for modeling complex interactions between potentially correlated variables
 - Automatic detection of optimal thresholds
 - High illustrative value
Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer

Ravi B. Parikh, MD, MPP; Christopher Manz, MD; Corey Chivers, PhD; Susan Harkness Regli, PhD; Jennifer Braun, MHA; Michael E. Draugelis, MS; Lynn M. Schuchter, MD; Lawrence N. Shulman, MD; Amol S. Navathe, MD, PhD; Mitesh S. Patel, MD, MBA; Nina R. O’Connor, MD

Findings In this cohort study of 26,525 patients seen in oncology practices within a large academic health system, machine learning algorithms accurately identified patients at high risk of 6-month mortality with good discrimination and positive predictive value. When the gradient boosting algorithm was applied in real time, most patients who were classified as having high risk were deemed appropriate by oncology clinicians for a conversation regarding serious illness.

Meaning In this study, machine learning algorithms accurately identified patients with cancer who were at risk of 6-month mortality, suggesting that these models could facilitate more timely conversations between patients and physicians regarding goals and values.
Best of GO @ ESMO 2019

• SIOG-ESMO Cancer in Elderly Task Force
 - Joint SIOG ESMO Session

ESMO-SIOG Collaborative session: Immunotherapy in older patients: Challenges and opportunities (ID 142)
Date 29.09.2019
Time 08:30 - 10:15
Location Tarragona Auditorium (Hall 7)
Chairs Demetris Papamichael (Nicosia, Nicosia, Cyprus), Siri Rostoft (Oslo, Norway)

Geriatric Oncology: The contribution of Arti Hurria (ID 7185)
Lecture Time 08:30 - 08:45
Speakers Silvio Monfardini (Milan, Italy)

Other sessions

Practicing oncology in elderly cancer patients (ID 139)
Date 29.09.2019
Time 10:15 - 11:45
Location Alicante Auditorium (Hall 3)
Chairs Etienne Brain (St. Cloud, France), Hendrik K. Van Halteren (Goes, Netherlands)
Outline

• SIOG News
• Geriatric Oncology studies
• SIOG TF Guideline Updates
• Summary
HER2-targeted treatment for older patients with breast cancer: An expert position paper from the International Society of Geriatric Oncology

HER2 task force
July 10, 2019

Read more

Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients

Prostate task force
July 9, 2019

Read more
Do guidelines influence clinical practice?

Q119: Regarding whether to recommend a health status assessment prior to treatment selection in patients with advanced prostate cancer who are \(\geq 70 \) years old, \[\square \] of panellists voted yes for the majority of patients, \[\square \] voted for yes for a minority of selected patients, and \[\square \] voted no. There were no abstentions. (No consensus for any given answer option.)
Outline

• SIOG News
• Geriatric Oncology studies
• SIOG TF Guideline Updates
• Summary
Summary [1]

1) GA studies
• Better to do one than none
• Better to manage with MDT input Shahrokni A et al ASCO 2019
• Some intervention is better than none
• Communication: important to both patient and physician satisfaction Mohile SG et al, JAMA Oncol 2019
• AI to develop next gen of prediction tools Parikh et al JAMA Ntwk 2019

2) Older adults in clinical trials
• Underrepresentation persists Ludmir EB et al JAMA Oncol 2019
• Search for meaningful outcomes continues
Summary [2]

3) Chemotherapy toxicity prediction tools
- At first there were 2 Hurria A et JCO 2011, Extermann Cancer et al 2012
- Validation in independent cohorts and specific tumour types Alibhai S et al ASCO 2019
- Moving beyond chemotherapy – IO, targeted therapies combination therapies

4) GO data in general
- More data on oldest old (>85 year) DeSantis CE et al CA Cancer J Clin 2019
- Preplanned subgroup analysis of older adults
- Adverse effects vs efficacy
- PROMs, HRQOL studies to preserve or improve QOL
How does this impact the older adult with cancer today?

2009
- CGA based prediction tools
- Screening tools
- Highlighting underrepresentation
- Tumour driven elderly specific studies
- Developing TF and guidelines

2019
- Better prediction tools
- AI / Big Data
- Better trial designs
- More guidelines
- QOL end points
- Communication

2020 and beyond
Acknowledgement

• Geriatric Oncology Team at NCCS
• Dr Supriya Mohile and Dr Hans Wildiers
• Dr Najia Musolino and SIOG Admin Team